Turbulent Mixing in the Surface Layers of Accreting Neutron Stars
نویسنده
چکیده
During accretion a neutron star (NS) is spun up as angular momentum is transported through its surface layers. We study the resulting differentially rotating profile, focusing on the impact this has for type I X-ray bursts. The predominant viscosity is likely provided by the Tayler-Spruit dynamo, where toroidal magnetic field growth and Tayler instabilities balance to support a steady-state magnetic field. The radial and azimuthal components have strengths of ∼ 105 G and ∼ 1010 G, respectively. This field provides a Maxwell stress on the shearing surface layers, which leads to nearly uniform rotation at the depths of interest for X-ray bursts (near densities of ≈ 106 g cm−3). A remaining small shear transmits the accreted angular momentum inward to the NS interior. Though this shear gives little viscous heating, it can trigger turbulent mixing. Detailed simulations will be required to fully understand the consequences of mixing, but our models illustrate some general features. Mixing has the greatest impact when the buoyancy at the compositional discontinuity between accreted matter and ashes is overcome. This occurs at high accretion rates, at low spin frequencies (when the spin is small, the relative speed of the accreted material is larger), or may depend on the ashes from the previous burst. We then find two new regimes of burning. The first is ignition in a layer containing a mixture of heavier elements from the ashes. If ignition occurs at the base of the mixed layer, recurrence times as short as ∼ 5 − 30 minutes are possible. This may explain the short recurrence time of some bursts, but incomplete burning is still needed to explain these bursts’ energetics. When mixing is sufficiently strong, a second regime is found where accreted helium mixes deep enough to burn stably, quenching X-ray bursts. We speculate that the observed change in X-ray burst properties near one-tenth the Eddington accretion rate is from this mechanism. The carbon-rich material produced by stable helium burning would be important for triggering and fueling superbursts. Subject headings: accretion, accretion disks — stars: magnetic fields — stars: neutron — X-rays: bursts — X-rays: stars
منابع مشابه
Instabilities, turbulence, and mixing in the ocean of accreting neutron stars
We consider the stability properties of the ocean of accreting magnetic neutron stars. It turns out that the ocean is always unstable due to the combined influence of the temperature and chemical composition gradients along the surface and of the Hall effect. Both the oscillatory and non-oscillatory modes can be unstable in accreting stars. The oscillatory instability grows on a short timescale...
متن کاملThe Turbulent Story of X-ray Bursts: Effects of Shear Mixing on Accreting Neutron Stars
During accretion, a neutron star (NS) is spun up as angular momentum is transported through its liquid surface layers. We study the resulting differentially rotating profile, focusing on the impact this has for type I X-ray bursts. The viscous heating is found to be negligible, but turbulent mixing can be activated. Mixing has the greatest impact when the buoyancy at the compositional discontin...
متن کاملRotational Evolution during Type I X-ray Bursts
The rotation rates of six weakly-magnetic neutron stars accreting in low-mass X-ray binaries have most likely been measured by Type I X-ray burst observations with the Rossi X-Ray Timing Explorer Proportional Counter Array. The phenomenology of the nearly coherent oscillations detected during the few seconds of thermonuclear burning is most simply understood as rotational modulation of brightne...
متن کاملTransport of Magnetic Fields in Convective, Accreting Supernova Cores
We consider the amplification and transport of a magnetic field in the collapsed core of a massive star, including both the region between the neutrinosphere and the shock, and the central, opaque core. An analytical argument explains why rapid convective overturns persist within a newly formed neutron star for roughly 10 seconds (> 10 overturns), consistent with recent numerical models. A dyna...
متن کاملElectron-ion scattering in dense multi-component plasmas: application to the outer crust of an accreting neutron star
The thermal conductivity of a dense multi-component plasma is critical to the modeling of accreting neutron stars. To this end, we perform large-scale molecular dynamics simulations to calculate the static structure factor of the dense multi-component plasma in the neutron star crust from near the photosphere-ocean boundary to the vicinity of the neutron drip point. The structure factors are us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008